
SLOS074 - D2785, OCTOBER 1983 - REVISED JUNE 1988

- Matched Gain and Offset Between Amplifiers
- Unity-Gain Bandwidth . . . 3 MHz Min
- Slew Rate . . . 1.5 V/ns Min
- Low Equivalent Input Noise Voltage 2 μV/Hz Max (20 Hz to 20 kHz)
- No Frequency Compensation Required
- No Latch Up
- Wide Common-Mode Voltage Range
- Low Power Consumption
- Designed to be Interchangeable with Raytheon RC4559

symbol (each amplifier)

AVAILABLE OPTIONS

SYMBO	DLIZATION	OPERATING	
DEVICE	PACKAGE	TEMPERATURE	V _{IO} max at 25°C
	SUFFIX	RANGE	
RC4559	D, P	−0°C to 70°C	6 mV

The D packages are available taped and reeled. Add the suffix R to the device type when ordering. (i.e.,RC4559DR)

description

The RC4559 is a dual high-performance operational amplifier. The high common-mode input voltage and the absence of latch-up make this amplifier ideal for low-noise signal applications such as audio preamplifiers and signal conditioners. This amplifier features a guaranteed dynamic performance and output drive capability that far exceeds that of the general-purpose type amplifiers.

The RC4559 is characterized for operation from 0°C to 70°C.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	,
Supply voltage V _{CC+} (see Note 1)	. 18 V
Supply voltage V _{CC} (see Note 1)	–18 V
Differential input voltage (see Note 2)	±30 V
Input voltage (any input, see Notes 1 and 3)	±15 V
Duration of output short-circuit to ground, one amplifier at a time (see Note 4) u	nlimited
Continuous total dissipation	500 mW
Operating free-air temperature range 0°C	to 70°C
Storage temperature range	o 125°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

NOTES: 1. All voltage values, unless otherwise noted, are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between V_{CC+} and V_{CC-}.

- 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
- 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
- 4. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.

RC4559 DUAL HIGH-PERFORMANCE OPERATIONAL AMPLIFIER

	PARAMETER	TEST CONDITIONS [†]	T _A ‡	MIN	TYP	MAX	UNIT	
	land offerstand term		25°C		2	6	mV	
VIO	Input offset voltage	$V_{O} = 0$	Full Range			7.5	mv	
lia	hand affect annual		25°C		5	100		
IIO	Input offset current	$V_{O} = 0$	Full range			200	nA	
	nput bias current		25°C		40	250	nA	
IBI	nput bias current	$V_{O} = 0$	Full range			500	ΠA	
VI	Input voltage range		25°C	±12	±13		V	
		$R_L \ge 3 k\Omega$	25°C	±12	±13			
VOM	Maximum peak output voltlage swing	RL = 600 Ω	25°C	±9.5	±10		V	
		$R_L \ge 2 k\Omega$	Full range	±10				
VI		$V_{O} = \pm 10 V,$	25°C	20	300			
	Input voltage range	$R_L = 2 k\Omega$	Full range	15			V/mV	
BOM	Maximum output-swing bandwidth	V _{OPP} = 20 V, R _L = 2 kΩ	25°C	24	32		kHz	
B ₁	Unity-gain bandwidth		25°C	3	4		MHz	
r _i	Input resistance		25°C	0.3	1		MΩ	
CMRR	Common-mode rejection ratio	$V_{O} = 0$	25°C	80	100		dB	
ksvs	Supply voltage sensitivity ($\Delta V_{IO} / \Delta V_{CC}$)	$V_{O} = 0$	25°C		10	75	μV/V	
V _n	Equivalent input noise voltage (closed loop)	A_{VD} = 100, R_S = 1 k Ω , f = 20 Hz to 20 kHz	25°C		1.4	2	μV	
In	Equivalent input noise current	f = 20 Hz to 20 kHz	25°C		25		pА	
			25°C		3.3	5.6	mA	
ICC	Supply current (both amplifiers)	No load, No signal	0°C		4	6.6		
			70°C		3	5		
V ₀₁ /V ₀₂	Crosstalk attentuation	$A_{VD} = 100,$ R _S = 1 kΩ, f = 10 kHz	25°C		90		dB	

electrical characteristics at specified free-air temperature, $V_{CC+} = 15 V$, $V_{CC-} = -15 V$

[†] All characteristics are specified under open-loop operation, unless otherwise noted.

[‡]Full range operating free-air temperature range is 0°C to 70°C.

matching characteristics at V_{CC+} = 15 V, V_{CC-} = –15 V, T_A = 25°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VIO	Input offset voltage	$V_{O} = 0$		±0.2		mV
lio	Input offset current	$V_{O} = 0$		±7.5		nA
IIB	Input bias current	$V_{O} = 0$		±15		nA
AVD	Large-signal differential voltage amplification	$V_{O} = \pm 10 \text{ V}, \text{ R}_{L} = 2 \text{ k}\Omega$		±1		dB

operating characteristics, V_{CC+} = 15 V, V_{CC-} = –15 V, T_A = 25°C

	PARAMETER		TEST CONDITIC	MIN	TYP	MAX	UNIT	
tr	Rise time	V _I = 20 mV,	$R_L = 2 k\Omega$,	C _L = 100 pF		80		μs
	Overshoot					18%		
SR	Slew rate at unity gain	Vj = 10 mV,	$R_L = 2 k\Omega$,	CL = 100 pF	1.5	2		V/µs

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
RC4559D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
RC4559DE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
RC4559DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
RC4559DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
RC4559DRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
RC4559DRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
RC4559P	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
RC4559PE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

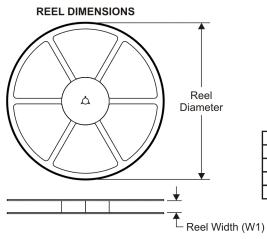
OBSOLETE: TI has discontinued the production of the device.

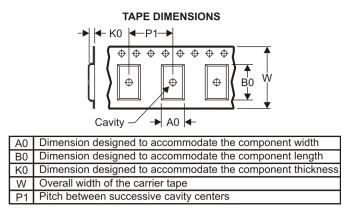
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

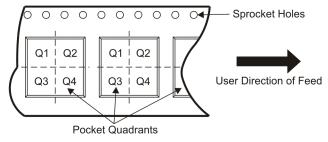
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)


⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

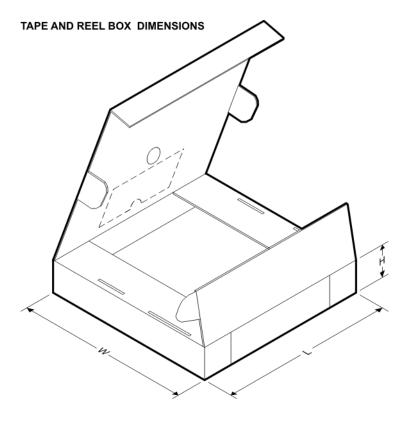

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


TEXAS INSTRUMENTS www.ti.com

TAPE AND REEL INFORMATION

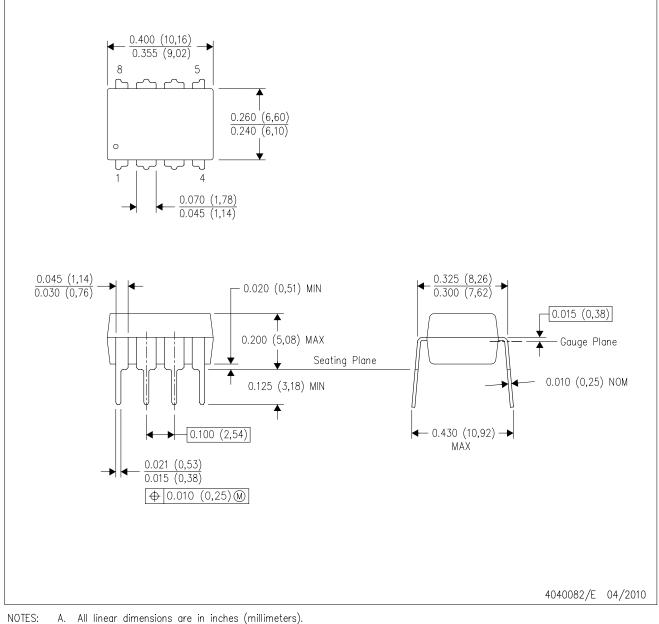
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
RC4559DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

19-Mar-2008



*All dimensions are nominal

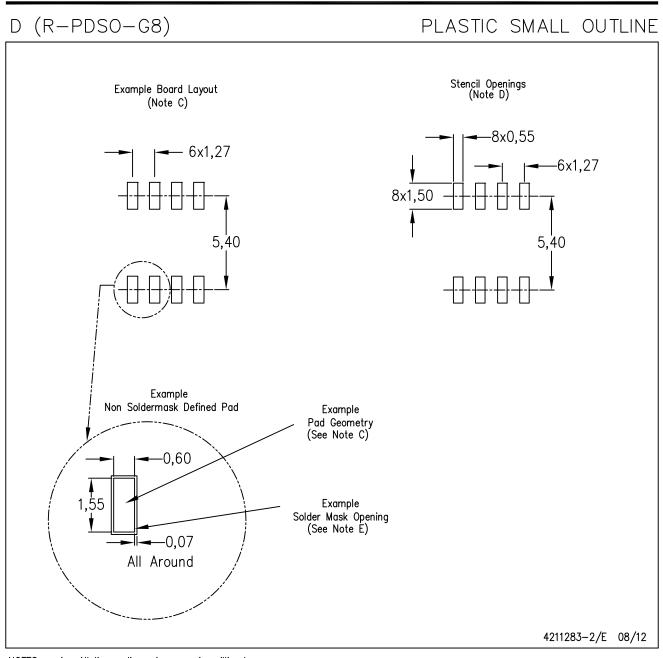
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
RC4559DR	SOIC	D	8	2500	340.5	338.1	20.6

P(R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

D (R-PDSO-G8)


PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Texas Instruments:

RC4559P RC4559D RC4559DE4 RC4559DR RC4559DRE4 RC4559PE4 RC4559DG4 RC4559DRG4